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1. Introduction 

Many researchers have focused on the destination choice in long-distance travel. Discrete choice modelling 

is a representative way to describe this problem (e.g., Kato et al., 2011; van Nostrand et al., 2013). Here, we 

assume that the “utility function” of visiting each destination can be constructed by attribute variables like 

attractiveness and travel cost. Nowadays the data of the number of traveller can be obtained regularly and 

frequently with large sample size and spatio-temporally high resolution. For example, “Mobile spatial 

statistics” (MSS) by NTT DOCOMO (Terada et al., 2013) provides the population of residential zone and 

staying place zone pairs at every one hour. Nevertheless, utilisation of such data for destination choice 

modelling is not fully developed yet. 

 As spatial resolution of data becomes higher, naïve application of multinomial logit model to 

such data may lead to serious estimation bias caused by spatial correlation. Destinations that are close to a 

destination with higher utility may also have higher utility compared to other alternative destinations. In 

addition, it is difficult to find enough attribute variables that can distinguish the difference of utility among 

contiguous destinations, as they tend to have similar values. Spatial discrete choice model (e.g., Smirnov, 

2010) is a common way to deal with this problem, although almost all of them need heavy computational 

load. Then, Yoshida and Tsutsumi (2013) and Wang et al. (2013) proposed the method to mitigate this 

problem. They introduced eigenvector spatial filtering (ESF) method to multinomial logit model 

(ESF-based MNL) and applied it to land use/price prediction. However, to authors’ knowledge, this method 

is only appeared in Shinha (2017) whose objective is also land use modelling. The advantages of 

ESF-based MNL are that a) parameter estimation is as easy as conventional MNL as the utility function is 

given by a form of linear combination, and b) the estimated result can be interpreted as missing explanatory 

variables and/or spatial map patterns. 

 In this paper, we apply ESF-based MNL to long-distance travel destination choice model and 

estimate parameters and spatial map patterns using MSS data. We show the improvement in model 

accuracy in terms of likelihood ratio and Akaike information criterion (AIC) by comparison with the result 

of conventional non-spatial MNL. In addition, the obtained spatial map patterns are interpreted. 

 



2. Methodology 

2.1. Data 

The population of residential and staying place zone pairs in Japan at 1 P.M. every day are collected for two 

weeks in June 2017 by MSS data. We only use the data whose residential zone is “Tokyo Metropolis” and 

staying place zones are 184 municipalities in Hokkaido Island (Fig. 1), which is located around 1000 km 

north from Tokyo. We regard that the staying place zones are the destinations of people in Tokyo. We 

obtain the number of people nd,i, who stay in each municipality i for each day d, and calculate the 

summation for two weeks (14 days) as ,i d id
N n , i=1,2,…,184. The destinations are regarded to be 

selected by random utility maximisation; the observed probability for selecting municipality i is given by

/i jj
N N , j=1,2,…,184. 

As for explanatory variables, we use following data; population (source: 2015 national census), 

added value per capita in both total and accommodation industry (source: 2016 national economic census), 

travel time from Tokyo to each municipality’s office, and flight frequency on each route (calculated by 

using road network data and flight timetable). These are selected by referring to the previous literatures. 

 

2.2. Spatial discrete choice model: ESF-based MNL 

MNL is represented by utility function, Ui = βXi + ε’i . Here, Ui is the utility to choose the municipality i as 

the destination, Xi is a vector of attribute explanatory variables of i, and β is a parameter vector. ε’i 

represents the error term that follows i.i.d. Gumbel distribution, although this assumption may not hold true 

because of the spatial correlation as mentioned before.  

 We solve this problem using ESF by adding new variables Ei to the utility function, which 

represents the spatial map pattern. E is calculated based on the theory of Moran’s I statistics, which is 

popular as representative of spatial dependence. ESF is the methodology to represent the spatial correlation 

by a set of orthogonal and uncorrelated vectors E calculated from Moran’s I and proximity matrix (e.g., 

Tiefelsdorf and Griffith, 2007). We expect that the term E excludes the spatial correlation within the error 

term and makes i.i.d. assumption hold true. We call this method as ESF-based MNL. Its utility function is 

given by Ui = βXi + γEi + εi . β and γ are parameter vectors and εi represents the error term that follows i.i.d. 

Gumbel distribution. For the municipality i=1,2,…,184, the selection probability of each municipality P(i) 

is given by 
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The parameters β and γ are estimated by the maximum likelihood method as the conventional MNL (Train, 

2003). The log-likelihood function lnL is given by 
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3. Results 

In addition to the explanatory variables explained in 2.1., we extract seven vectors as E for ESF-based 

MNL (detail in this process will be explained in the conference). The estimated results of both ESF-based 

MNL and conventional non-spatial MNL are shown in Table 1. First of all, all parameters are well obtained 

in terms of t-statistic and sign condition. Moreover, we confirm the improvement in both log-likelihood 

ratio and AIC in ESF-based MNL. This implies that we should consider the spatial correlation in 

destination choice in high resolution and ESF-based MNL is the useful method to deal with this problem. 

Actually, the coefficients of travel time and flight frequency are greatly different between non-spatial and 

spatial models. This result might show the estimation bias in the non-spatial model, which should be further 

examined. 

 Fig. 1 shows the estimated spatial map pattern, namely the value of γE. The meaning of these 

values are the difference in utility to choose each destination if the values βX are the same. Thus, we may 

interpret this map pattern as a) the resort area near Sapporo city is more likely to be visited compared to 

other areas, and b) eastern and southern Hokkaido area are less likely to be visited despite their 

attractiveness and accessibility. 

 

Table 1. Estimated parameters 

Explanatory variables 

Spatial: 

ESF-based MNL 

Non-spatial: 

Conventional MNL 

Estimate t-statistic Estimate t-statistic 

Population [mil.] β1 8.95 113.27 ** 8.84 185.40 ** 

Added value in total per capita [mil. JPY] β2 0.22 68.98 ** 0.31 103.84 ** 

Added value in accommodation industry  

per capita [mil. JPY] 

β3 1.65 43.42 ** 0.66 22.65 ** 

Travel time [hour] β4 -3.30 -461.52 ** -1.78 -385.20 ** 

Flight frequency (1 / # flights per day) β5 -2.94 -30.37 ** -12.33 -128.29 ** 

Additional vectors of spatial correlation 

γ1 -10.63 -89.00 **  

γ2 -8.82 -59.30 ** 

γ3 8.80 74.71 ** 

γ5 8.62 83.92 ** 

γ6 -4.90 -25.77 ** 

γ7 9.00 46.11 ** 

γ8 5.18 58.49 ** 

Log likelihood ratio 0.392 0.366 

AIC 272,453.0 283,971.2 

# samples 42,972 

 
** represents 1% significant.  

 



 

 
The values of γE and representative cities are drawn in the map. This can be interpreted as spatial map 

pattern: difference in utility if the values βX are the same.  

Figure 1. Estimated spatial map patterns 

 

 

4. Conclusion 

We proposed the method of long-distance travel destination choice model for spatially high-resolution data. 

We introduced ESF-based MNL and showed the improvements in the estimated result. The main 

contributions of this paper are that a) the increase in estimation reliability in terms of spatial correlation 

increases the usefulness of analyses with spatially high-resolution data, and b) we can further utilise the 

proposed model for quantitative analyses of the spatial effect, e.g., how the increase in attractiveness of a 

certain zone affects in the neighbourhood areas. To that end, we will discuss on a) better selection of 

explanatory variables to improve the model accuracy, b) results on application to other dataset, e.g., other 

origins and long period data, and c) consideration of day of departure (weekday/end). In addition, as MSS 

data do not provide trip purpose, we should integrate other data to discuss the difference among them as a 

future work. 
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